PI

6-Axis Nanopositioning Systems

Sophisticated Parallel-Kinematics Positioning Stages

Click on the Images to Jump to Datasheet

6-Axis Nanopositioning Stages / Systems

Non-magnetic 6-axis parallel kinematics Hexapod with PiezoWalk ${ }^{\circledR}$ high-load actuators, for High Energy Physics

P-562.6CD PIMars six-axis parallelkinematics piezo flexure nanopositioning stage

P-587 6-axis long-travel piezo-flexure stage on top of E-710.6CD 6-axis digital piezo controller

N-515K Non-Magnetic Piezo Hexapod

 6-Axis Precision Positioning System with NEXLINE ${ }^{\circledR}$ Linear Drives

 6-Axis Precision Positioning System with NEXLINE ${ }^{\circledR}$ Linear Drives}

6-axis parallel kinematics (Hexapod) with integrated N-215 NEXLINE ${ }^{\circledR}$ high-load actuators, suitable for applications in strong magnetic fields
\square Travel Ranges 10 mm Linear, 6° Rotation
\square Large Clear Aperture $\varnothing 202 \mathrm{~mm}$
\square Non-Magnetic
\square Nanometer Resolution
\square Low-Profile: 140 mm Height Only
\square Parallel Kinematics for Enhanced Dynamics and
Better Multi-Axis Accuracy
\square Up to 500 N Force Generation
\square Self Locking at Rest, No Heat Generation

Model	Travel range	Load capacity	Dimensions
N-515KNPH	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}: 10 \mathrm{~mm}$	50 kg	Outer \varnothing baseplate, 380 mm
NEXLINE	$\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}, \theta_{\mathrm{Z}}: 6^{\circ}$		\emptyset moved platform (top) 300 mm
Piezo Hexapod			140 mm height

N-510 High-Force NEXLINE ${ }^{\circledR}$ Z/Tip/Tilt Platform

 Nanometer Precision for Semiconductor Industry, Wafer Alignment

- Vacuum Compatible and Non-Magnetic Designs Feasible
- Parallel Kinematics for Enhanced Dynamics and Better Multi-Axis Accuracy
\square NEXLINE ${ }^{\oplus}$ Piezo Walking Drive Free from Wear and Tear ■ Load Capacity 200 N
■ High Precision with Integrated 5 nm Incremental Sensors + Picometer Resolution Dithering Mode

Model	Travel	Load capacity	Linear velocity	Dimensions
N-510 NEXLINE ${ }^{\circledR}$	$1,3 \mathrm{~mm}$	200 N	$0.2 \mathrm{~mm} / \mathrm{s}$	$\varnothing 360 \mathrm{~mm}\left(14.2^{\prime \prime}\right)$
Z, tip, tilt platform	vertical range tilt angle			Clear aperture
			250 mm	

N-510K High-Stiffness NEXLINE ${ }^{\circledR}$ Z Stage High-Precision Positioning, with Capacitive Sensors

The N-510KHFS hybrid-drive nanopositioner offers maximum accuracy for semiconductor inspection applications

■ Self Locking at Rest, No Heat Generation
■ Hybrid Drive: PiezoWalk ${ }^{\circledR}$ plus PICMA ${ }^{\circledR}$
■ Travel Range: $\mathbf{4 0 0} \mu \mathrm{m}$ Coarse + $\mathbf{4 0} \mu \mathrm{m}$ Fine
■ $2 \boldsymbol{\mu m}$ Closed-Loop Resolution

- Direct Metrology:

One Single Control Loop with Capacitive Sensors

- High Push and Holding Force to 25 N
\square Piezo Walking Drive w/o Wear and Tear \& Outstanding Lifetime due to PICMA ${ }^{\oplus}$ Piezo Actuators

Model	Vertical travel	Velocity	Bidirectional repeatability	Load capacity	Dimensions
N-510KHFS	$400 \mu \mathrm{~m}$ coarse	$1 \mathrm{~mm} / \mathrm{sec}$	50 nm	25 N	$\emptyset 300 \mathrm{~mm}$
Hybrid-	$40 \mu \mathrm{~m}$ fine		(full travel)		68.5 mm
Focus System				height	

P-562.6CD PIMars 6-Axis Piezo Stage System

 High-Precision Nanopositioning System with 6 Degrees of Freedom

$\square 6$ Motion Axes: 3 x Linear, $3 \times$ Rotation
Travel Ranges to $\mathbf{2 0 0} \boldsymbol{\mu m}$ Linear and 1 mrad Tilt Angle Enhanced Responsiveness \& Multi-Axis Precision: Parallel Kinematics / Metrology
■ Highest Linearity and Stability with Capacitive Sensors
Frictionless, High-Precision Flexure Guiding System
Excellent Scan-Flatness
Clear Aperture 66×66 mm
Outstanding Lifetime Due to PICMA ${ }^{\oplus}$ Piezo Actuators
UHV Versions to $\mathbf{1 0}^{-9} \mathbf{~ h P a}$

PIMars open-frame piezo stages are fast and highly accurate multi-axis scanning and nanopositioning systems with flatness and straightness in the nanometer range. Thanks to the parallel-kinematic design, where all piezo drives act on the same moving platform, and sophisticated digital control algorithms it is possible to achieve highly precise motion

```
Application Examples
■ Scanning microscopy
    (SPM)
■ Mask/wafer positioning
■ Interferometry
- Metrology
- Biotechnology
■ Micromanipulation
```

in all degrees of freedom: three linear axes and three rotary axes. The travel ranges amount to $200 \mu \mathrm{~m}$ in X, Y and Z, and the tilt angles are $\pm 0.5 \mathrm{mrad}$ about the respective axis. Systems with larger travel ranges or faster response are available on request. A sixaxis system with $800 \mu \mathrm{~m}$ travel range in the X and Y axis is available as the P-587.6CD s. p. 2-76.

PIMars systems feature a large $66 \times 66 \mathrm{~mm}$ clear aperture for transmitted-light applications such as near-field scanning or confocal microscopy and mask positioning. PIMars stages for ultra-high vacuum applications are also available. These versions contain vacuum-qualified components only. The integrated ceramic-encapsulated PICMA ${ }^{\circledR}$ actuators allow high bakeout temperatures

Ordering Information
P-562.6CD
PIMars 6-Axis Nanopositioning System, $200 \mu \mathrm{~m}, 1 \mathrm{mrad}$, Parallel Metrology

Other travel ranges on request!
and assure minimal outgassing rates. A non-magnetizable version is available on request.

Capacitive Sensors for Highest Accuracy and Stability

PI's proprietary capacitive sensors measure position directly and without physical contact. They are free of friction and hysteresis, a fact which, in combination with the positioning resolution of well under 1 nm , makes it possible to achieve very high levels of linearity. Further advantages of direct metrology with capacitive sensors are the excellent long-term stability, high phase fidelity and the high bandwidth of up to 10 kHz .

Active and Passive Guidance for Nanometer Flatness and Straightness

Wire-cut flexures optimized with Finite Element Analysis (FEA) are used to guide the stage. The FEA techniques give the design the highest possible stiffness and minimize linear and angular runout. Further enhancement is achieved by active trajectory control: multiaxis nanopositioning systems equipped with parallel metrology are able to measure platform position in all degrees of freedom against a common, fixed reference. In such systems, undesirable motion from one actuator in the direction of another (crosstalk) is detected immediately and actively compensated by the servo-loops. This can keep deviation from a trajectory to under a few nanometers, even in dynamic operation.

Technical Data

Model	P-562.6CD	Tolerance
Active axes	X, Y, Z, $\theta \mathrm{X}, ~ \theta \mathrm{Y}, ~ \theta \mathrm{Z}$	
Motion and Positioning		
Integrated sensor	Capacitive	
Closed-loop travel X, Y, Z	$200 \mu \mathrm{~m}$	
Closed-loop tip/tilt angle	$\pm 0.5 \mathrm{mrad}$	
Closed-loop resolution X, Y, Z	1 nm	typ.
Closed-loop tip/tilt resolution	0.1 rad	typ.
Linearity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	0.01 \%	typ.
Linearity $\theta \mathrm{X}, \mathrm{\theta} \mathrm{Y}, \mathrm{\theta} \mathrm{Z}$	0.1 \%	typ.
Repeatability in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	$\pm 2 / \pm 2 / \pm 3 \mathrm{~nm}$	typ.
Repeatability $\theta \mathrm{X} / \mathrm{\theta}^{\prime} / \theta \mathrm{Z}$	$\pm 0.1 / \pm 0.1 / \pm 0.15 \mu \mathrm{rad}$	typ.
Flatness	< 15 nm	typ.
Unloaded resonant frequency in X / Y / Z	110 / 110 / 190 Hz	$\pm 20 \%$
Load capacity	50 N	max.
Push/pull force capacity in motion direction	120 / 30 N	max.
Drive properties		
Ceramic type	PICMA ${ }^{\text {® }}$	
Electrical capacitance in $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$	$7.4 / 7.4 / 14.8 \mu \mathrm{~F}$	$\pm 20 \%$
Dynamic operating current coefficient in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	$4.6 / 4.6 / 9.2 \mu \mathrm{~A} /(\mathrm{Hz} \bullet \mu \mathrm{m})$	$\pm 20 \%$
Miscellaneous		
Operating temperature range	-20 to $80^{\circ} \mathrm{C}$	
Material	Aluminium	
Mass	1.45 kg	$\pm 5 \%$
Cable length	1.5 m	$\pm 10 \mathrm{~mm}$
Sensor / voltage connection	$2 \times$ Sub-D Special	

Recommended controller / amplifier
E-710.6CD s.p. 2-128 or E-712.6CD digital controller s. p. 2-140

PIEZO NANO POSITIONING I WWW.PI.WS

P-587 6-Axis Precision Piezo Stage

Long Scanning Range, Direct Position Measurement

P-587 piezo-driven parallel-kinematics nanopositioning / scanning stage with E-710.6CD 6 -axis digital controller

For Surface Metrology, Scanning and Positioning in all Six
Degrees of Freedom
$\square 800 \times 800 \times 200 \mu \mathrm{~m}$ Linear Range
\square Up to 1 mrad Rotational Range
\square Parallel-Kinematics / Metrology for Enhanced
Responsiveness / Multi-Axis Precision
Direct Metrology with Capacitive Sensors for Highest
Linearity
Outstanding Lifetime Due to PICMA ${ }^{\oplus}$ Piezo Actuators
Frictionless, High-Precision Flexure Guiding System
Active Trajectory Control in All 6 Degrees of Freedom

The $\mathrm{P}-587.6 \mathrm{CD}$ is a unique, highly accurate, 6-axis scanning and positioning system based on piezo flexure drives. It provides a linear travel range of $800 \times 800 \times 200 \mu \mathrm{~m}$ and rotation ranges up to 1 mrad .

Application Examples

- Interferometry
- Metrology
- Nano-imprinting
- Semiconductor testing
- Semiconductor fabrication
used to guide the stage. FEA techniques are used to give the design the highest possible stiffness in, and perpendicular to, the direction of motion, and to minimize linear and angular runout. Flexures allow extremely high-precision motion, no matter how minute, as they are completely free of play and friction. A flatness and straightness in the low nanometer range is achieved, important for surface metrology applications.

Parallel Kinematics and Metrology with Capacitive Sensors for High Trajectory Fidelity

In a parallel kinematics multiaxis system, all actuators act directly on one moving platform. This means that all axes move the same minimized mass and can be designed with identical dynamic properties. Parallel kinematics systems have additional advantages over serially stacked systems, including more-compact construction and no cumulative errors from the individual axes. Multiaxis nanopositioning systems equipped with direct metrology are able to measure platform position in all degrees

Ordering Information

P-587.6CD
6-Axis Nanopositioning System with Long Travel Range, $800 \times 800 \times 200 \mu \mathrm{~m}, \pm 0.5 \mathrm{mrad}$, Parallel Metrology, Capacitive Sensors
of freedom against one common reference. In such systems, undesirable motion from one actuator in the direction of another (cross-talk) is detected immediately and actively compensated by the servo-loops. This Active Trajectory Control Concept can keep deviation from a trajectory to under a few nanometers, even in dynamic operation.

Automatic Configuration

Pl digital piezo controllers and nanopositioning stages with ID-Chip can be operated in any combination, supported by the AutoCalibration function of the controller. Individual stage data and optimized servo-control parameters are stored in the ID-Chip and are read out automatically by the digital controllers.

Direct Position Measurement with Sub-Nanometer Accuracy Pl's proprietary capacitive sensors measure position directly and without physical contact. They are free of friction and hysteresis, a fact which, in combination with the positioning resolution of well under 1 nm , makes it possible to achieve very high levels of linearity. A further advantage of direct metrology with capacitive sensors is the high phase fidelity and the high bandwidth of up to 10 kHz .

Excellent Guiding Accuracy

Flexures optimized with Finite Element Analysis (FEA) are

P-587 dimensions in mm

Technical Data

Model	P-587.6CD	Tolerance
Active axes	X, Y, Z, $\theta_{X}, \theta_{Y}, \theta_{Z}$	
Motion and positioning		
Integrated sensor	Capacitive	
Closed-loop travel X, Y	$800 \mu \mathrm{~m}$	
Closed-loop travel Z	$200 \mu \mathrm{~m}$	
Closed-loop tip/tilt angle	$\pm 0.5 \mathrm{mrad}$	
Closed-loop θ Z angle	$\pm 0.5 \mathrm{mrad}$	
Open-loop / closed-loop resolution X, Y	$0.9 / 2.2 \mathrm{~nm}$	typ.
Open-loop / closed-loop resolution Z	$0.4 / 0.7 \mathrm{~nm}$	typ.
Open-loop / closed-loop resolution θ_{X}, θ_{Y}	$0.05 / 0.1 \mu \mathrm{rad}$	typ.
Open-loop / closed-loop resolution θ_{Z}	$0.1 / 0.3 \mu \mathrm{rad}$	typ.
Linearity $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	0.01\%	typ.
Linearity $\theta_{X}, \theta_{Y}, \theta_{Z}$	0.1\%	typ.
Repeatability X, Y	$\pm 3 \mathrm{~nm}$	typ.
Repeatability	$\pm 2 \mathrm{~nm}$	typ.
Repeatability θ_{X}, θ_{Y}	$\pm 0.1 \mu \mathrm{rad}$	typ.
Repeatability $\theta_{\text {z }}$	$\pm 0.15 \mu \mathrm{rad}$	typ.
Flatness	<15 nm	typ.
Mechanical properties		
Stiffness X / Y / Z	$0.55 / 0.55 / 1.35 \mathrm{~N} / \mathrm{\mu m}$	
Unloaded resonant frequency in $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$	$103 / 103 / 235 \mathrm{~Hz}$	$\pm 20 \%$
Resonant frequency @ 500 g in $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$	$88 / 88 / 175 \mathrm{~Hz}$	$\pm 20 \%$
Resonant frequency @ 2000 g in $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$	$65 / 65 / 118 \mathrm{~Hz}$	$\pm 20 \%$
Push/pull force capacity in motion direction	$50 / 10 \mathrm{~N}$	Max.
Drive properties		
Ceramic type	PICMA ${ }^{\text {® }}$	
Electrical capacitance in X / Y / Z	$81 / 81 / 18.4 \mu \mathrm{~F}$	± 20 \%
Dynamic operating current coefficient (DOCC) in X, Y, θ_{Z}	$12.6 \mu \mathrm{~A} /(\mathrm{Hz} \bullet \mu \mathrm{m})$	$\pm 20 \%$
Dynamic operating current coefficient (DOCC) $Z, \theta_{X}, \theta_{Y}$	$11.5 \mu \mathrm{~A} /(\mathrm{Hz} \bullet \mu \mathrm{m})$	$\pm 20 \%$
Miscellaneous		
Operating temperature range	-20 to $80^{\circ} \mathrm{C}$	
Material	Aluminum	
Dimensions	$240 \times 240 \times 50 \mathrm{~mm}$	
Mass	7.2 kg	$\pm 5 \%$
Cable length	1.5 m	$\pm 10 \mathrm{~mm}$
Sensor / voltage connection	$2 \times$ Sub-D Special	
Recommended controller / amplifier	E-710.6CD (p. 2-128) or E-712.6CD (p. 2-140) digital controller	

The maximum rotational angle in θ_{Z} is 8 mrad , the tilt angles around X and Y rate 3 mrad . Due to parallel kinematics linear motion is not possible when the stage is in extreme position.

M-850K Vacuum Hexapod 6-Axis Positioner

Parallel-Kinematics System for Wide Temperature Ranges

- 6 Degrees of Freedom, Works in Any Orientation
 \square Vacuum Compatible up to $10^{6} \mathrm{hPa}$
 $\square 200$ kg Load Capacity (Vertical)
 - Repeatability to $\pm 1 \mu \mathrm{~m}$
 ■ Encoder Resolution to 5 nm

Model	Operating temperature range	Storage temperature	Travel ranges	Dimensions
	-10 bis $+25^{\circ} \mathrm{C}$	-20 bis $+40^{\circ} \mathrm{C}$	$\pm 50 \mathrm{~mm}(\mathrm{X}, \mathrm{Y})$,	$\varnothing 350 \mathrm{~mm}$
M-850KTVH			$\pm 25 \mathrm{~mm}(\mathrm{Z})$ $\pm 15^{\circ}\left(\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}\right)$, Vacuum Hexapod	

M-850K Weatherproof Hexapod

Ultra-High-Precision Hexapod for Outdoor Operation

This customer-specific M-850KWAH Hexapod can operate outdoors at altitudes up to 5000 m

M-810 Miniature Hexapod
 High Precision in a Small Package

The miniature M-810 Hexapod provides long travel ranges despite its compact design

Program Overview

- Piezo Ceramic Actuators \& Motors

■ Piezo Nanopositioning Systems and Scanners
■ Active Optics / Tip-Tilt Platforms
■ Capacitive Nanometrology Sensors

- Piezo Electronics: Amplifiers and Controllers
- Hexapod 6-Axis Positioners / Robots

■ Micropositioning Stages \& Actuators
■ Photonics Alignment Systems, Solutions for Telecommunications

■ Motor Controllers
■ Ultrasonic Linear Motors

Request or download the complete PI Nanopositioning \& Piezo Actuator Catalog

USA (East) \& CANADA
PI (Physik Instrumente) L.P. 16 Albert St.
Auburn, MA 01501
Tel: +1 (508) 8323456
Fax: +1 (508) 8320506
info@pi-usa.us
www.pi-usa.us
JAPAN
PI Japan Co., Ltd.
Akebono-cho 2-38-5
Tachikawa-shi
J-Tokyo 190
Tel: +81 (42) 5267300
Fax: +81 (42) 5267301
info@pi-japan.jp
www.pi-japan.jp

CHINA
Physik Instrumente (PI Shanghai) Co., Ltd. Building No. 7-301 Longdong Avenue 3000 201203 Shanghai, China Tel: +86(21) 68790008 Fax: +86(21) 68790098 info@pi-china.cn www.pi-china.cn

FRANCE
PI France S.A.S
244 bis, avenue Max Dormoy Via G. Marconi, 28
92120 Montrouge I-20091 Bresso (MI)

Tel: +33 (1) 55226000
Fax: +33 (1) 41485662
info.france@pi.ws
www.pi-france.fr
ITALY
Physik Instrumente (PI) S.r.I.
l-20091 Bresso (MI)
Tel: +39 (02) 66501101
Fax: +39 (02) 87385916
info @pionline.it
www.pionline.it

USA (West) \& MEXICO
PI (Physik Instrumente) L.P.
5420 Trabuco Rd., Suite 100
Irvine, CA 92620
Tel: +1 (949) 6799191
Fax: +1 (949) 6799292
info@pi-usa.us
www.pi-usa.us

PI Japan Co., Ltd.
Hanahara Dai-ni Building, \#703
4-11-27 Nishinakajima,
Yodogawa-ku, Osaka-shi
J-Osaka 532
Tel: +81 (6) 63045605
Fax: +81 (6) 63045606
info @pi-japan.jp
www.pi-japan.jp
UK \& IRELAND
PI (Physik Instrumente) Ltd.
Trent House
University Way,
Cranfield Technology Park, Cranfield,
Bedford MK43 0AN
Tel: +44 (1234) 756360
Fax: +44 (1234) 756369
uk@pi.ws
www.physikinstrumente.co.uk

GERMANY

Physik Instrumente (PI)
GmbH \& Co. KG
Auf der Römerstr. 1
D-76228 Karlsruhe/Palmbach
Tel: +49 (721) 4846-0
Fax: +49 (721) 4846-100
info@pi.ws•www.pi.ws

